

# RADIO TEST REPORT ETSI EN 300 220-1 V2.4.1(2012-05) ETSI EN 300 220-2 V2.4.1(2012-05)

Product: Ajax Hub

Trade Name: ハノハン

Model Name: Ajax Hub

Serial Model: N/A

Report No.: NTEK-2016NT05246034R1

## **Prepared for**

Ajax Systems Inc

State of Delaware is Suite 201. 910 Foulk Rd., Country of New Castle,
Wilmington, DE 19803, United States

## Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen P.R. China
Tel.: +86-0755-61156588 Fax.: +86-0755-61156599
Website:www.ntek.org.cn



#### TEST RESULT CERTIFICATION

Applicant's name ...... : Ajax Systems Inc

New Castle, Wilmington, DE 19803, United States

Report No.: NTEK-2016NT05246034R1

Manufacture's Name.....: "Research and Production Enterprise "Ajax"LLC

5, Sklyarenko, Kyiv04073, Ukraine.

Product description

Model and/or type reference : Ajax Hub

Serial Model: N/A

Rating(s) ...... DC 4.5V/500mAh from Li-ion Battery or AC 100~240V

Standards ..... EN 300 220-1 V2.4.1: 2012-05

EN 300 220-2 V2.4.1; 2012-05

This device described above has been tested by Shenzhen NTEK, and the test results show that the equipment under test (EUT) is in compliance with the of article 3.2 of the Directive 1999/5/EC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK, this document may be altered or revised by Shenzhen NTEK, personnel only, and shall be noted in the revision of the document.

Date of Test .....

Date of Issue : 15 June 2016

Test Result...... Pass

Testing Engineer

(Jack Li)

Jason cher

TECHNO

ark L

Technical Manager

(Jason Cher

Authorized Signatory:

(Sam Chen)



| ot       | Table of Contents                                | Page |
|----------|--------------------------------------------------|------|
| 1        | . Summary Of Test Results                        | 4647 |
| 47       | 1.1 Test Facility                                | 700  |
| ــاد     | 1.2 Measurement Uncertainty                      | 7 7  |
| 2.       | . General Information                            | 847  |
|          | 2.1 General Description Of EUT                   | 8 6  |
| (F       | 2.2 Description Of Test Conditions               | 947  |
|          | 2.2.1 Test Conditions and Channel                | 9 4  |
|          | 2.3 Description Of Support Units                 | 10   |
|          | 2.4 Equipments List For All Test Items           | 11 2 |
| 3 .      | . Frequency error and frequency drift            | 12   |
|          | 3.1 Applied procedures / limit                   | 12   |
| 4        | 3.2 Measuring Instruments and Setting            | 12   |
|          | 3.3 Test Procedures                              | 13   |
| X        | 3.4 Test Setup Layout                            | 13   |
|          | 3.5 EUT Operation during Test                    | 13   |
| *        | 3.6 TEST RESULTS                                 | 14   |
| 4.       | Average power (conducted)                        | 15   |
| ۔        | 4.1 Limits                                       | 15   |
|          | 4.2 Measuring Instruments and Setting            | 15.0 |
|          | 4.3 Test setup                                   | 15   |
| 4        | 4.4 EUT Operation during Test                    | 16   |
|          | 4.5 TEST RESULTS                                 | 16   |
| 5.       | Effective radiated power                         | 17   |
|          | 5.1 Applied procedures / limit                   | 17   |
| 4        | 5.2 Measuring Instruments and Setting            | 17   |
|          | 5.3 Test Procedures                              | 17   |
| 十        | 5.4 Test Setup Layout                            |      |
| ~        | 5.5 EUT Operation during Test                    | 18   |
| <b>.</b> | 5.6 TEST RESULTS                                 | 19 7 |
| 6.       | Frequency stability under low voltage conditions | 200  |
|          | 6.1 Applied procedures / limit                   | 20   |
| (F)      | 6.2 Measuring Instruments and Setting            | 20   |
| 1        | 6.3 Test Procedures                              | 21   |
|          |                                                  |      |



| Table of Contents                                   | Page   |
|-----------------------------------------------------|--------|
| 6.4Test Setup Layout                                | 21     |
| 6.5 EUT Operation during Test                       | A 21 A |
| 6.6 TEST RESULTS                                    | 22     |
| 7. Spurious emissions – Transmitter (25- 1000MHz)   | 23     |
| 7.1 Applied procedures / limit                      | 23     |
| 7.2 Measuring Instruments and Setting               | 23     |
| 7.3 Test Procedures                                 | 23     |
| 7.4 Test Setup Layout                               | 24     |
| 7.5 EUT Operation during Test                       | 24     |
| 7.6 Results of Standby Mode Spurious Emissions      | 24     |
| 7.7 TEST RESULTS (25MHz ~ 1000MHz)                  | 25     |
| 8. Spurious emissions – Transmitter (Above 1000MHZ) | 26     |
| 8.1 Applied procedures / limit                      | 26     |
| 8.2 Measuring Instruments and Setting               | 26     |
| L 8.3 Test Procedures L L L L                       | 27     |
| 8.4 Test Setup Layout                               | 27     |
| 8.5 EUT Operation during Test                       | 28     |
| 8.6 Results of Standby Mode Spurious Emissions      | 28     |
| 8.7 TEST RESULTS                                    | 29     |
| 9. Duty cycle                                       | 30     |
| 9.1 Applied procedures / limit                      | 30     |
| 9.2 TEST RESULTS                                    | 30     |
| 10. Transient power                                 | 31     |
| 10.1 Applied procedures / limit                     | 31     |
| 10.2 Test Procedures                                | 31     |
| 10.3 Test Result                                    | 31     |
| 11. Adjacent channel power                          | 33     |
| 11.1 Applied procedures / limit                     | 33     |
| 11.2 Test Procedures                                | 33     |
| 11.3 Test Result                                    | 34     |
| 12. Modulation bandwidth                            | 34     |
| 12.1 Applied procedures / limit                     | 34     |
| 12.2 Measuring Instruments and Setting              | 34     |
| 4 4 4 4 4 4 4 4 4 4                                 | 4 4    |



| Table of Contents                                      | P         | age |
|--------------------------------------------------------|-----------|-----|
|                                                        | at at at  | .0  |
| 12.3 Test Procedures                                   |           | 4   |
| 12.4 Test Result                                       | A A A 3   | 4   |
| 13 Receiver sensitivity                                | 3         | 8   |
| 13.1 Limit                                             | A A A 3   | 8   |
| 13.2 Method of measurement with continuous bit streams | 3         | 8   |
| 13.3 Method of measurement with messages               | * * * * 3 | 8   |
| 14. Blocking                                           | 3         | 9   |
| 14.1 Applied procedures / limit                        |           | 9   |
| 14.2 Method of measurement                             | Ø Ø 3     | 9   |
| 14.3 Test Procedures                                   | 3         | 9   |
| 14.4 Test Result                                       | 4         | 0.  |
| 15. Spurious emissions – Receiver (30-1000MHz)         | 4         | 1   |
| 15.1 Applied procedures / limit                        | A A A 4   | 1.  |
| 15.2 Measuring Instruments and Setting                 | 4         | 1   |
| 15.3 Test Procedures                                   | x x x 4   | 1   |
| 15.4 Test Setup Layout                                 | 4         | 1   |
| 15.5 EUT Operation during Test                         | * * * * 4 | 1   |
| 15.6 TEST RESULTS (25MHz-1000MHz)                      | 4         | 2   |
| 16. Spurious emissions – Receiver (above 1000MHz)      |           | 3   |
| 16.1 Applied procedures / limit                        | A 4       | 3   |
| 16.2 Measuring Instruments and Setting                 | 4         | 3   |
| 16.3 Test Procedures                                   | 4         | 3   |
| 16.4 Test Setup Layout                                 | 4 4       | 3   |
| 16.5 EUT Operation during Test                         | d d d 4   | 3   |
| 16.6 TEST RESULTS (Above 1000MHz)                      | 4         | 4   |
|                                                        |           | -   |

APPENDIX-PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS



## 1. Summary Of Test Results

Test procedures according to the technical standards: ETSI EN 300 220-1 V2.4.1 (2012-05)

ETSI EN 300 220-2 V2.4.1 (2012-05)

| Clause | Description of Test Item                         | Results(Pass/Fail) | N.T(Not Test) |
|--------|--------------------------------------------------|--------------------|---------------|
| 25     | Transmitter Parar                                | meters             | 2 2 .         |
| 7.1    | Frequency error and frequency drift              | * * *              | ₩.T.          |
| 7.2    | Average power                                    | Pass               | 30 30         |
| 7.3    | Effective radiated power                         | 4 4 4              | LN.T          |
| 7.4    | Spread spectrum modulation                       |                    | N.T           |
| 7.5    | Transient power                                  | Pass               | 7 7           |
| 7.6    | Adjacent channel power                           | 0 0                | N.T           |
| 7.7    | Modulation bandwidth                             | Pass               | 5 5           |
| 7.8    | spurious emissions                               | Pass               | 4             |
| 7.9    | Frequency stability under low-voltage conditions | Pass               | 4 4           |
| 7.10   | Duty cycle                                       |                    | N.T           |
| 7.11   | Time-out-timer                                   | 4 4 4              | N.T           |
|        | Receiver Param                                   | eters              | 4             |
| 8.1    | Receiver sensitivity                             | 4 4 4              | N.T           |
| 8.2    | Receiver LBT threshold                           | * * *              | → N.T →       |
| 8.3    | Adjacent channel selectivity                     | 37 37 37           | N.T           |
| 8.4    | Blocking                                         | Pass               | * *           |
| 8.5    | Spurious response rejection                      | 10 10 10           | N.T           |
| 8.6    | Receiver spurious radiation                      | Pass               |               |
| (1)    |                                                  | (1) (1) (1)        |               |



#### 1.1 Test Facility

NTEK Testing Technology Co., Ltd.

Add.: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District,

Shenzhen P.R. China

FCC Registered No.: 791972 IC Registered No.:9270A-1

CNAS Registration No.:L5516

#### 1.2 Measurement Uncertainty

The reported uncertainty of measurement  $\mathbf{y} \pm \mathbf{U}$ , where expended uncertainty  $\mathbf{U}$  is based on a standard uncertainty multiplied by a coverage factor of  $\mathbf{k=2}$ , providing a level of confidence of approximately  $\mathbf{95}$ %.

| No. | Item 4                       | Uncertainty |
|-----|------------------------------|-------------|
| 1   | Conducted Emission Test      | ±1.38dB     |
| 2   | RF power,conducted           | ±0.16dB     |
| 3   | Spurious emissions,conducted | ±0.21dB     |
| 4   | All emissions,radiated(<1G)  | ±4.68dB     |
| 5.  | All emissions,radiated(>1G)  | ±4.89dB     |
| 6   | Temperature                  | ±0.5°C      |
| 7   | Humidity & A                 | ±2%         |



## 2. General Information

## 2.1 General Description Of EUT

| Equipment                          | Ajax Hub                                                                                                                                                                                                           |                             |  |  |  |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|--|
| Brand Name                         | VIVX                                                                                                                                                                                                               | * * * * *                   |  |  |  |
| Model Name.                        | Ajax Hub                                                                                                                                                                                                           |                             |  |  |  |
| Serial Model                       | N/A                                                                                                                                                                                                                |                             |  |  |  |
| Model Difference                   | N/A                                                                                                                                                                                                                |                             |  |  |  |
|                                    | The EUT is Ajax Hub                                                                                                                                                                                                | 4 4 4 4                     |  |  |  |
|                                    | Operation Frequency:                                                                                                                                                                                               | 868 MHz – 868.5MHz;         |  |  |  |
|                                    | Channel number                                                                                                                                                                                                     | 3 Channels                  |  |  |  |
|                                    | Modulation Type:                                                                                                                                                                                                   | FM & & &                    |  |  |  |
| Product Description                | Antenna Gain(Peak)                                                                                                                                                                                                 | 0dBi                        |  |  |  |
|                                    | Antenna Designation:                                                                                                                                                                                               | Built-in Inverted L-antenna |  |  |  |
|                                    | Power Rating                                                                                                                                                                                                       | DC 4.5V                     |  |  |  |
|                                    | Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual. |                             |  |  |  |
| Channel List                       | Refer to below                                                                                                                                                                                                     |                             |  |  |  |
| Adapter                            | N/A                                                                                                                                                                                                                |                             |  |  |  |
| Battery                            | DC4.5V, 500mA                                                                                                                                                                                                      |                             |  |  |  |
| Hardware Version (wireless module) | N/A                                                                                                                                                                                                                | at at at at                 |  |  |  |
| Hardware Version                   | N/A                                                                                                                                                                                                                | 5 5 5 5                     |  |  |  |
| Software Version                   | N/A                                                                                                                                                                                                                |                             |  |  |  |

#### Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2

| Channel | Frequency (MHz) |
|---------|-----------------|
| 00      | 868.1           |
| 7 01 7  | 868.3           |
| 02      | 868.5           |



#### 2.2 Description Of Test Conditions

1.Block diagram of transmitter

E-1

#### 2.2.1 Test Conditions and Channel

|                   | Normal Test Conditions | Extreme Test Conditions |  |  |  |
|-------------------|------------------------|-------------------------|--|--|--|
| Temperature       | 15°C - 35°C            | -10°C ~ 40°C Note: (1)  |  |  |  |
| Relative Humidity | 20% - 75%              | N/A                     |  |  |  |
| Supply Voltage    | AC 230V                | AC 207-253V             |  |  |  |
| Supply Voltage    | DC 4.5V                | DC 2.9-3.5V             |  |  |  |

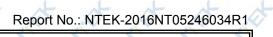
#### Note:

- (1) For tests at extreme temperatures, measurements shall be made in accordance with the procedures specified in clause 5.4.1.2, at the upper and lower temperatures of the range as follow: temperature: -10°C to +40°C;
- (2) For the Leclanché or lithium type battery: 0.85 times the nominal voltage of the battery; for the mercury or nickel-cadmium type of battery: 0.9 times the nominal voltage of the battery. In both cases, the upper extreme test voltage shall be 1.15 times the nominal voltage of the battery.
- (3) The measurements are performed at the highest, middle, lowest available channels.





### 2.3 Description Of Support Units


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Item | Equipment | Mfr/Brand | Model/Type No. | Series No. | Note |
|------|-----------|-----------|----------------|------------|------|
| E-1  | Ajax Hub  | XVIV      | Ajax Hub       | N/A        | EUT  |
| +    | * * *     | * *       | * * *          | * * *      | 大    |
|      |           |           | 3" 3" 3"       | 21 21 2    |      |
| + `  | * * *     | * *       | * * *          | * * *      | *    |
|      |           |           | 3" 3" 3" 3"    | 3" 3" 3    |      |
| +    | * * *     | ` * *     | * * * *        | * * *      | *    |

| Item     | Shielded Type |    | Shielded Type |    | Shielded Type |     | Shielded Type |    | Shielded Type |    | em Shielded Type |  | Shielded Type |  | e Core | re Length |  | Note |  |  |
|----------|---------------|----|---------------|----|---------------|-----|---------------|----|---------------|----|------------------|--|---------------|--|--------|-----------|--|------|--|--|
| <b>*</b> | 4             |    | .0            | .0 |               | .01 | .0            | .0 | .0            | .0 |                  |  |               |  |        |           |  |      |  |  |
| - 2      |               | 3  | 2 ,           |    | 7             | 4   | 7             | 7, | 7             | 2  | 4                |  |               |  |        |           |  |      |  |  |
| *        | 4             | d. | d.            | 4  | 4             | 4   | 4             | 4  | d             | 4  | 4                |  |               |  |        |           |  |      |  |  |
| 3        |               | 3  | J             | 3  | 7,1           | 2   | 4             | 71 | 2             | 21 | 2 2              |  |               |  |        |           |  |      |  |  |
| *        | *             | *  | *             | *  | *             | *   | *             | *  | *             | *  | *                |  |               |  |        |           |  |      |  |  |

#### Note:

- (1)
- The support equipment was authorized by Declaration of Confirmation. For detachable type I/O cable should be specified the length in cm in <code>FLength</code> column. (2)



act.



act

#### 2.4 Equipments List For All Test Items

| Item | Kind of<br>Equipment                     | Manufactur<br>er | Type No.        | Serial No.   | Last calibration | Calibrated until | Calibration period |
|------|------------------------------------------|------------------|-----------------|--------------|------------------|------------------|--------------------|
| H    | Spectrum<br>Analyzer                     | Agilent          | E4407B          | 160400005    | 2015.07.06       | 2016.07.05       | 1 year             |
| 2    | Test<br>Receiver                         | R&S              | ESPI            | 101318       | 2015.07.06       | 2016.07.05       | 1 year             |
| 3    | Bilog<br>Antenna                         | TESEQ            | CBL6111D        | 31216        | 2015.07.06       | 2016.07.05       | 1 year             |
| 4    | 50Ω Coaxial<br>Switch                    | Anritsu          | MP59B           | 6200264416   | 2015.07.06       | 2016.07.05       | 1 year             |
| 5    | Spectrum<br>Analyzer                     | ADVANTES<br>T    | R3132           | 150900201    | 2015.07.06       | 2016.07.05       | 1 year             |
| 6    | Horn<br>Antenna                          | EM               | EM-AH-20<br>180 | 2011071402   | 2015.07.06       | 2016.07.05       | 1 year             |
| _7   | Horn Ant                                 | Schwarzbec<br>k  | BBHA<br>9170    | 9170-181     | 2015.07.06       | 2016.07.05       | 1 year             |
| 8    | Amplifier                                | EM               | EM-30180        | 060538       | 2015.07.06       | 2016.07.05       | 1 year             |
| 9    | Loop<br>Antenna                          | ARA              | PLA-2030/<br>B  | 1029         | 2015.07.06       | 2016.07.05       | 1 year             |
| 10   | Power<br>Meter                           | R&S              | NRVS            | 100696       | 2015.07.06       | 2016.07.05       | 1 year             |
| 11   | Signal<br>Generator                      | R&S              | SMT 06          | 832080/007   | 2015.07.06       | 2016.07.05       | 1 year             |
| 12   | Temperatur<br>e &<br>Humitidy<br>Chamber | GIANT<br>FORCE   | GTH-056P        | GF-94454-1   | 2015.07.06       | 2016.07.05       | 1 year             |
| 13   | Power Sensor                             | R&S              | URV5-Z4         | 0395.1619.05 | 2015.07.06       | 2016.07.05       | 1 year             |

### 3. Frequency error and frequency drift

#### 3.1 Applied procedures / limit

The frequency error and drift shall not exceed the values given in table 1 or 2 under normal and extreme conditions.

Table 1: Frequency error for systems with channel spacings of less than or equal to 25 kHz

|                     |        | Freque               | ency error limit      | (kHz)                 |                        |
|---------------------|--------|----------------------|-----------------------|-----------------------|------------------------|
| Channelization      | 47 MHz | 47 MHz to<br>137 MHz | 137 MHz to<br>300 MHz | 300 MHz to<br>500 MHz | 500 MHz to<br>1000 MHz |
| Channelized systems | ±10    | ±10                  | ±10                   | ±12                   | ±12.5                  |

Note: For equipment having a channel spacing of 12,5 kHz or less, the frequency error limit shall not exceed 50 % of the channel spacing.50 % of the channel spacing.

Table 2: Frequency error for all other systems

| Operating frequency |             |  |       | quency erro | limit (pp | m),seer | ote |
|---------------------|-------------|--|-------|-------------|-----------|---------|-----|
| ACT ACT             | ≤ 1 000 MHz |  | 10 10 |             | ±100      | 1.0     |     |

NOTE: The frequency error measured shall not exceed the designated frequency band.

#### 3.2 Measuring Instruments and Setting

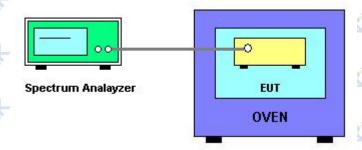
The following table is the setting of Spectrum Analyzer.

| Spectrum Analyzer | Setting        |
|-------------------|----------------|
| Attenuation       | 10~20dB        |
| Span Frequency    | 500kHz         |
| RB A              | 10 kHz         |
| VB                | 30 kHz         |
| Detector          | Peak           |
| Trace             | Peak 50 sweeps |



#### 3.3 Test Procedures

- a)Connected the antenna port to the Spectrum Analyzer via a Attenuator,
- b)Set center frequency of spectrum analyzer = operating carrier frequency.


set the Spectrum Analyzer as below:

Resolution BW: 10 kHz Video BW: 30 kHz Span: 500 kHz

c)When the trace completed, find the peak value of the power envelope and record the frequency.

The above procedure shall be performed at normal and extreme test conditions.d. The measurement shall be repeated at the lowest, the middle, and the highest channel of the stated frequency range. These measurements shall also be performed at normal and extreme test conditions.

#### 3.4 Test Setup Layout



#### 3.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

A.C.

A.C.

Report No.: NTEK-2016NT05246034R1

OF STA

A.

A.



3.6 TEST RESULTS

A. C.

A. C.

4. Ct

A.C.

ALL ALL

| E   | JT:                                            | Ajax Hub          |                 | Model Name     |             | Ajax Hub                                |      |               |    |
|-----|------------------------------------------------|-------------------|-----------------|----------------|-------------|-----------------------------------------|------|---------------|----|
| Te  | emperature:                                    | 26°C              | Ø .             | Relative Humi  | idity:      | 60 %                                    | .07  | .05           | 4  |
| Pr  | ressure:                                       | 1012 hPa          | <u> </u>        | Test Voltage   | :           | N/A                                     |      | 3             | -  |
| Te  | est Mode :                                     | N/A               | * *             | * *            | *           | *                                       |      | 1             |    |
|     |                                                |                   | W AW            | A AU           | 14/         | 1                                       | A.C. | Total Control |    |
| No  | te: the equipm                                 | nent is not capab | le of producing | an unmodulated | carrie      | 7                                       | 4    | 4             | 4  |
|     |                                                | at lat            | 4               | 4              |             | -47                                     |      | -07           |    |
|     | 4 4                                            | 4 4               | 4 4             |                | 3           | 7,                                      | 4    | 4             | 4  |
| d   | dt .                                           | at at             | at at           | at at          | A.          | ot                                      | d    | ot            |    |
|     | 21" Z                                          |                   | Y 31 2          |                |             | 3                                       |      | 21            | 3  |
| ا ا |                                                | A- A-             | AL AL           | ~ ~ ~ ~ ·      | \<br>\<br>- | 1                                       | 4    | 4             |    |
|     |                                                | W AW A            | W JO            | A A            | 10          | 160                                     | 3.41 | 10            |    |
|     | 4 4                                            | 4 4               | 7 7             | 3 4 4          | -           | 4                                       | 4    | 4             | 4  |
|     |                                                | of of             | at at           | AT AT          | .0          | .01                                     | 0    | .0            |    |
|     | 4 4                                            | 4 4               | 4               |                | 3           | 4                                       | 4    | 7,            | Z  |
| *   | *                                              | * *               | * *             | * *            | *           | 大                                       | *    | *             |    |
| 4   | The Table                                      |                   |                 |                |             | Ziv.                                    | 717  | Ziv           | 4  |
|     |                                                |                   |                 |                |             | - L                                     | ,L   |               |    |
|     |                                                |                   |                 | A A            | 1.0         | 10                                      | 1    |               |    |
|     | 4 4                                            | 4 4               | 4               | 3 4 4          |             | 4                                       | 4    | 4             | 4  |
|     |                                                | of of             | of of           | At At          | .0          | .0                                      | .07  | .0            |    |
|     | 4 4                                            | 4 4               | 4               |                | 3           | 7,                                      | 4    | 7             | Z. |
| 4   | *                                              | * *               | * *             | * *            | 4           | 4                                       | 4    | 4             |    |
|     | 11° 11                                         | 314               |                 |                |             | Ziv                                     | Z''  | 31            | 3  |
| 1   | 1                                              | A                 | 4               | AL AL          | 1           | 1                                       | 1    | 1             |    |
|     | 10                                             | V AV A            |                 | A TO           | 120         | 10                                      | 1    | 10            |    |
|     | ALIENT AND |                   |                 |                | -           | THE | 4    | 4             | 4  |
| 4   |                                                | of of             | of of           | At At          | .0          | .01                                     | .01  | A COL         |    |
|     | 4 4                                            | 4 4               | 4 4             |                | 2           | 4                                       | 4    | 7             | 4  |
| *   | 大                                              | * *               | * *             | * *            | *           | *                                       | *    | *             |    |
| 1   | The Till                                       | Y 34 3            |                 |                |             | T.V.                                    | 110  | T.V           | 1  |
|     |                                                |                   |                 |                |             | -                                       | L    | L             |    |
|     |                                                |                   | OF ST           | AT AT          | -07         | 10                                      | 100  |               |    |
|     | 4. 4                                           | 4, 4,             | 4               | 7 4            | 7           | 4.                                      | 4    | 4             | 4  |
|     |                                                | AL AL             |                 |                |             |                                         |      |               |    |

spect spect

spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect spect

N.Et

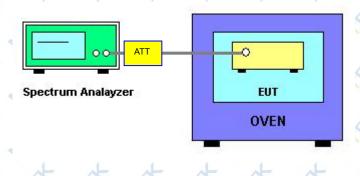




## 4. Average power (conducted)

#### 4.1 Limits

Under normal and extreme test conditions, the average output power (conducted) shall be less than or equal to the value given in table 3 for the respective frequency band, application, and channel spacing.


Table 3

|                              | Table                                                    |                                                                                                             |                                                                           |
|------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Frequency Bands              | Maximum radiated power, e.r.p. / power spectral density  | Channel spacing                                                                                             | Spectrum access and mitigation requirement (e.g. Duty cycle or LBT + AFA) |
| 863,000 MHz ~<br>870,000 MHz | 25 mW Power<br>density is limited to<br>-4,5 dBm/100 kHz | No requirement                                                                                              | 0,1 % or LBT +                                                            |
| 868,000 MHz<br>~868,600 MHz  | 25 mW                                                    | No requirement                                                                                              | 1 % or LBT + AFA                                                          |
| 869,400 MHz<br>~869,650 MHz  | 500 mW                                                   | \$25 kHz The whole stated frequency band may be used as 1 wideband channel for high speed data transmission | 10 % or LBT +<br>AFA                                                      |

#### 4.2 Measuring Instruments and Setting

| Spectrum Analyzer | Setting                             |
|-------------------|-------------------------------------|
| Attenuation       | Auto W W W                          |
| Center Frequency  | The frequency which is transmitting |
| Detector          | Average                             |
| Sweep Time        | Auto Auto                           |
| RBW               | 100 kHz                             |
| VBW               | ≧RBW                                |

#### 4.3 Test setup





4.4 EUT Operation during Test
The EUT was programmed to be in continuously transmitting mode.

#### 4.5 TEST RESULTS

| EUT:          | Ajax Hub | 14  | Model Name :       | Ajax Hub        |
|---------------|----------|-----|--------------------|-----------------|
| Temperature : | 26°C     | 4 4 | Relative Humidity: | 60 %            |
| Pressure :    | 1012 hPa | 4   | Test Voltage :     | DC 4.5V(NORMAL) |
| Test Mode :   | TX CH00  | 3 3 | 3 3                | 2 2 2 2         |

### 868MHz~868.6MHz

| TEST CONDITIONS |                 |           |     |     | 3     | Tot | tal e.i.r.p ( dE | 3m)   | 3      |
|-----------------|-----------------|-----------|-----|-----|-------|-----|------------------|-------|--------|
|                 | TEST CONDITIONS |           |     |     |       |     |                  |       |        |
| T nom (°C)      | 20.00           | V nom (V) | 4.5 |     | 10.26 |     |                  | N. C. |        |
| T min (°C)      | -10.00          | V max (V) | 3.8 | .1. | 10.22 | 4   |                  | 7     | 5      |
| 1 111111(-0)    | -10.00          | V min (V) | 5.6 |     | 10.25 |     |                  |       | 11-07  |
| T max (°C)      | 10.00           | V max (V) | 3.8 |     | 10.21 | 7   | 7                | 7     | 5      |
| Tillax (C)      | 40.00           | V min (V) | 5.6 | (F) | 10.15 |     |                  | N. C. | 11-07  |
| * 4 7           | Max RF Power    |           |     |     |       | 7   | 10.26            | 7     | 74     |
|                 | Limits 2        |           |     |     |       | 20  | dBm (-10dB       | W)    | 2 ,    |
| at at           | Result A        |           |     |     | 4     |     | Complies         | 4     | at the |



### 5. Effective radiated power

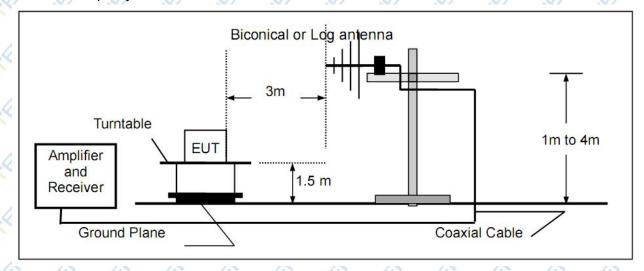
#### 5.1 Applied procedures / limit

The effective radiated power shall not exceed the values 25mW

#### 5.2 Measuring Instruments and Setting

The following table is the setting of the power meter.

|   | The following table to the detail | g of the period moter. |
|---|-----------------------------------|------------------------|
| 4 | Spectrum Analyzer                 | Setting                |
| • | Attenuation                       | Auto                   |
|   | Start Frequency                   | 25 MHz                 |
| 4 | Stop Frequency                    | 1000 MHz               |
| • | Detector                          | Positive Peak          |
|   | Sweep Time                        | Auto                   |
| 2 | RB / VB                           | 100 kHz/100 kHz        |
|   |                                   |                        |


#### 5.3 Test Procedures

EUT was placed on a 1.5m outdoor wooden table. The search antenna is placed at 3m distances from the EUT and search antenna height is from 1-4m. With the transmitter operating at continuously mode, the turntable was slowly rotated to locate the direction of maximum emission. Once maximum direction is determined, the search antenna was raised and lowered in both vertical and horizontal polarizations.

The EUT was removed from the turntable and replaced with a linearly polarized antenna connected to a calibrated RF signal generator. The RF generator was set to a measured emission frequency and the search antenna was raised and lowered to produced a maximum received reading. The generator output was increased to match the radiated emission reading measured previously, and the result expressed in dB E.I.R.P. or ERP.



### 5.4 Test Setup Layout



### 5.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

A COL

A COLOR





## 5.6 TEST RESULTS

| di. | NTEK                      |                 | Page 1                    | of 45        | Report No.: | NTEK-2016N | IT05246034R |
|-----|---------------------------|-----------------|---------------------------|--------------|-------------|------------|-------------|
| 7   | 5.6 TEST RESU             | ULTS A A        | - C+ -                    | . 大 . 太      | 7 7         | at at      |             |
| -   | EUT:                      | Ajax Hub        | -                         | Model Nam    | -           | x Hub      |             |
| 1   | Temperature :             | 26°C            |                           | Relative Hu  | -           |            | (F)         |
|     | Pressure :<br>Test Mode : | 1012 hPa<br>N/A | <del>2</del> <del>2</del> | Test Voltage | e : N/A     |            | 2 4         |
|     | 4 14 1                    |                 |                           | 4 10         | 10          | A LO       | 100         |
|     | * * *                     | *               | - 4                       | * *          | 4           | * *        | - X         |
|     |                           |                 | 310                       | 310          | 210 2       | A. File.   | 3100        |
|     | at at                     | at at at        | - 4                       | at at        | at .        | at at      | · At        |
| -   | 4 4                       | 4 4             | 4                         | 7            | 4 4         | -          | 4 4         |
|     | at let le                 | at lat lat      |                           | at at        | and the     | at at      |             |
| 1   | 4 4                       | 4. 4.           | 4                         |              | 4. 4        |            | 4           |
|     |                           |                 | A COLOR                   |              | A COLOR     | OF TO      | A COLOR     |
|     | * * *                     | *               | - X-                      | , 大 大        | 4           | * *        | 一大          |
|     |                           |                 | - Silvi - S               | 310          | 21° 2       | 210        | 3100        |
|     | at at                     | at at at        | - 4                       | ot ot        | at          | at at      | · ct        |
| 7   |                           | 4 4             | 4                         |              | 4" 4        | 45         | 4 4         |
|     | at at                     | at at at        |                           | at at        | and a       | at at      | - CIT       |
|     | 4 4                       | 4. 4.           | 4 4                       |              | 4, 4        |            | 4 4         |
| 11. | et ziet zi                | at Ariat Ariat  | Ailt A                    |              | Air Air     | at And     | A STATE OF  |
|     | 大大                        | * * *           |                           |              |             |            |             |
| 11. |                           | et with with    | Zill Z                    | ict wiet     | Till Ti     | at mat     |             |
|     | at at a                   | at at at        |                           | at at        | .ct         | at at      | at the      |
| 1   |                           | 4 4             | 4 4                       | 4            | 4 4         | 4          | 4 4         |
| 11. | et wat wi                 |                 |                           | AT AT        | ALL S       | OF ROT     | A COLOR     |
|     | * 4 4                     |                 | - X-                      |              | 4 4         | * 4        | 一个人         |
| 1   |                           | V 210 210       | 31° 2                     | 710          | J. J.       | 4 34       | 3100 3      |
|     | at wat all                | at at at        | · dt                      | at at        | dt.         | at at      | · At        |
| 1   | 4 4                       | 4 4             | 4                         | 4            | 4 4         | 4          | 4           |
|     | at with all               | at at at        | - Ct                      | at at        |             | at at      |             |
| 1   | 4 4                       | 4 4             | 4 4                       | 7            | 4, 4        | 4          | 4, 4        |
|     | 4 4                       | or to to        |                           | A 10         | 107         | of to      | 4           |
| 2   | 'F 5 5                    | 4 4             | 4 4                       | , L Z        | 4 4         | 4          | 4 4         |



6. Frequency stability under low voltage conditions

#### 6.1 Applied procedures / limit

This test is for battery operated equipment only.

The equipment shall either:

- a) remain on channel, for channelized equipment within the limits stated in clause 5.1.1, or within the assigned operating frequency band, for non-channelized equipment, whilst the radiated or conducted power is greater than the spurious emission limits; or
- b) the equipment cease to function below the providers declared operating voltage.

#### 6.2 Measuring Instruments and Setting

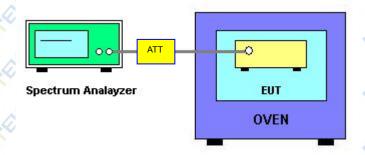
The following table is the setting of Spectrum Analyzer.

| Spectrum Analyzer | Setting        |    |  |  |
|-------------------|----------------|----|--|--|
| Attenuation       | 10~20dB        |    |  |  |
| Span Frequency    | 500kHz         |    |  |  |
| RB                | 10 kHz         | 41 |  |  |
| VB                | 30 kHz         |    |  |  |
| Detector          | Peak           |    |  |  |
| Trace             | Peak 50 sweeps |    |  |  |



#### 6.3 Test Procedures

- a)Connected the antenna port to the Spectrum Analyzer via a Attenuator,
- b)Set center frequency of spectrum analyzer = operating carrier frequency.


set the Spectrum Analyzer as below:

Resolution BW: 10 kHz Video BW: 30 kHz Span: 500 kHz

c)When the trace completed, find the peak value of the power envelope and record the frequency.

The above procedure shall be performed at normal and extreme test conditions.d. The measurement shall be repeated at the lowest, the middle, and the highest channel of the stated frequency range. These measurements shall also be performed at normal and extreme test conditions.

#### 6.4Test Setup Layout



#### 6.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

A. C.

A. C.

Report No.: NTEK-2016NT05246034R1

A PROPERTY OF THE PARTY OF THE

A COL

FIRE



A STEEL STEEL 6.6 TEST RESULTS

| .at     | NTEK           | t st       | Page 22 of 45 Report No.: NTEK-2016NT05246034R1 | ¥        |
|---------|----------------|------------|-------------------------------------------------|----------|
|         | 6.6 TEST RESUL | TS TOT TOT |                                                 | <b>*</b> |
| 4       | EUT:           | Ajax Hub   | Model Name : Ajax Hub                           | . 5      |
| -       | Temperature :  | 26 °C      | Relative Humidity: 60 %                         | >        |
|         | Pressure :     | 1012 hPa   | Test Voltage : DC 4.5V                          | 4        |
| *       | Test Mode :    | TX CH1     | * * * * * * * * * *                             | F        |
| Silvi Z |                |            |                                                 | · •      |
| .ct     | AC power       | Conducted  | Limits                                          | ¥        |

| 4       |    | ressure:                    | 1012 hPa        | Test Voltage : DC 4.5V                                                                                                    | 3 4   |
|---------|----|-----------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------|-------|
| x       | T  | est Mode :                  | TX CH1          | * * * * * * * *                                                                                                           | 一大    |
| Zie.    | 4  |                             | Ziv Ziv         |                                                                                                                           | 4     |
| A COL   | 10 | AC power<br>Supplied (V) AC | Conducted Power | Limits                                                                                                                    | et .  |
| 7       |    | 4.5V                        | 5.19dBm         | a) Remain on channel, for channelized equipment within the                                                                |       |
| -       | .0 | 3.8V                        | 2.10dBm         | limits stated in clause 7.1.3, or within the assigned operating frequency band, for non-channelized equipment, whilst the | 400   |
| 4       | 4  | 3.0V                        | 0.57dBm         | radiated or conducted power is greater than the spurious emission limits; or                                              |       |
| A.C.    |    | €2.5                        | No function     | b) The equipment cease to function below the providers declared operating voltage.                                        | 5 2   |
| A.C.    | 4  | THE THE                     | THE THE         | And And And And And And                                                                                                   | Zi ct |
| A.C.    |    | ALC: ALC:                   | ALIE ALIE       | AND AND AND AND AND AND AND                                                                                               | 4 ×   |
| A COL   |    | - sigt sigt                 | - with with     | with with with with with with                                                                                             | 4 ×   |
| A COL   |    | - siet siet                 | with with       | and and and and and and                                                                                                   | 4 ×   |
| A COL   |    | - siet siet                 | THE THE         | and and and and and and                                                                                                   | 4 ×   |
| A COL   | 4  | - siet siet                 | THE THE         | with with with with with with                                                                                             | 4     |
| ALIEN.  |    | Tiet Tiet                   | - Siet Siet     | with with with with with with                                                                                             | - C+  |
| Ziele . |    | Tiet siet                   | Tiet with       | such such such such such such such                                                                                        | 4     |
| A. C.   |    | and and                     | Sitt Sitt       | such such such such such such such                                                                                        | 4     |
| 1       |    | THE AND                     |                 |                                                                                                                           | 4     |
|         |    | THE AND                     | Tiet Tiet       | such such such such such such such                                                                                        |       |
| Ziret.  |    |                             | - d d           | * * * * * * * * * * * * * * * * * * *                                                                                     |       |
| , cit   |    | t at a                      | the st          | 对对对对对对对                                                                                                                   | at .  |



#### 7. Spurious emissions - Transmitter (25- 1000MHz)

#### 7.1 Applied procedures / limit

|           | 47 MHz to 74 MHz    |                   |               |
|-----------|---------------------|-------------------|---------------|
| State     | 87.5 MHz to 118 MHz | Other frequencies | Frequencies   |
| State     | 174 MHz to 230 MHz  | ≤ 1 000 MHz       | > 1 000 MHz   |
|           | 470 MHz to 862 MHz  |                   |               |
| Operating | 4 nW /-54dBm        | 250 nW/-36dBm     | 1 μW /-30dBm  |
| Standby   | 2 nW /-57dBm        | 2 nW /-57dBm      | 20 nW /-47dBm |

#### 7.2 Measuring Instruments and Setting

The following table is the setting of the Spectrum Analyzer.

| Spectrum Analyzer | Setting             |
|-------------------|---------------------|
| Attenuation       | Auto                |
| Start Frequency   | 25 MHz              |
| Stop Frequency    | 1000 MHz            |
| Detector          | Positive Peak       |
| Sweep Time        | Auto at at at at at |
| RB / VB           | 100 kHz/100 kHz     |


#### 7.3 Test Procedures

- a. The EUT was placed on the top of the turntable in open test site area.
- b. The test shall be made in the transmitting mode. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- c. This measurement shall be repeated with the transmitter in standby mode where applicable.
- d. For 30~1000MHz spurious emissions measurement, the broad band bi-log receiving antenna was placed 3 meters far away from the turntable.
- e. The broadband receiving antenna was fixed on the same height with the EUT to find each suspected emissions of both horizontal and vertical polarization. Each recorded suspected value is indicated as Read Level (Raw).
- f. Replace the EUT by standard antenna and feed the RF port by signal generator.
- g. Adjust the frequency of the signal generator to the suspected emission and slightly rotate the turntable to locate the position with maximum reading.
- h. Adjust the power level of the signal generator to reach the same reading with Read Level (Raw).
- i. The level of the spurious emission is the power level of (8) plus the gain of the standard antenna in dBi and minus the loss of the cable used between the signal generator and the standard antenna.
- j. If the level calculated in (9) is higher than limit by more than 6dB, then lower the RBW of the spectrum analyzer to 30KHz. If the level of this emission does not change by more than 2dB, then it is taken as narrowband emission, otherwise, wideband emission.
- k. The measurement shall be repeated at the lowest and the highest channel of the stated frequency range.



#### 7.4 Test Setup Layout

(A) Radiated Emission Test Set-Up, Frequency Below 1000MHz



#### 7.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

#### 7.6 Results of Standby Mode Spurious Emissions

For the initial investigation on standby mode and receiving mode, no significant differences in spurious emissions were observed between these 2 modes. So test data for standby mode was omitted in this section.



7.7 TEST RESULTS (25MHz ~ 1000MHz)

| EUT:          | Ajax Hub            |             | Model Name :       | Ajax Hub |
|---------------|---------------------|-------------|--------------------|----------|
| Temperature : | 24 °C ⟨ ⟨ ⟨ ⟨ ⟨ ⟨ ⟩ | .47         | Relative Humidity: | 54%      |
| Pressure :    | 1010 hPa            | 4 4         | Test Power :       | DC 4.5V  |
| Test Mode :   | TX A                | <u>م</u> لـ | طم طم طم           | * * *    |

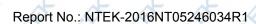
| Polar | Frequency | Meter<br>Reading | Factor | Emission<br>Level | Limits | Margin | Detector |
|-------|-----------|------------------|--------|-------------------|--------|--------|----------|
| (H/V) | (MHz)     | (dBm)            | (dB)   | (dBm)             | (dBm)  | (dB)   | Туре     |
| V     | 41.32     | 60.44            | 18.95  | -72.83            | -36.00 | -36.83 | peak     |
| V     | 180.41    | 40.31            | 12.51  | -79.48            | -36.00 | -43.48 | peak     |
| V     | 680.11    | 58.54            | 20.87  | -69.20            | -54.00 | -15.20 | peak     |
| V     | 909.77    | 39.39            | 24.09  | -62.57            | -36.00 | -26.57 | peak     |
| H.    | 40.04     | 58.51            | 19.42  | -72.41            | -36.00 | -36.41 | peak     |
| H     | 156.51    | 35.61            | -5.17  | -79.87            | -36.00 | -43.87 | peak     |
| H     | 417.13    | 62.26            | -10.82 | -76.39            | -36.00 | -40.39 | peak     |
| H     | 41.38     | 44.51            | -10.82 | -73.83            | -36.00 | -37.83 | peak     |

Remark:

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit



## 8. Spurious emissions – Transmitter (Above 1000MHZ)


## 8.1 Applied procedures / limit

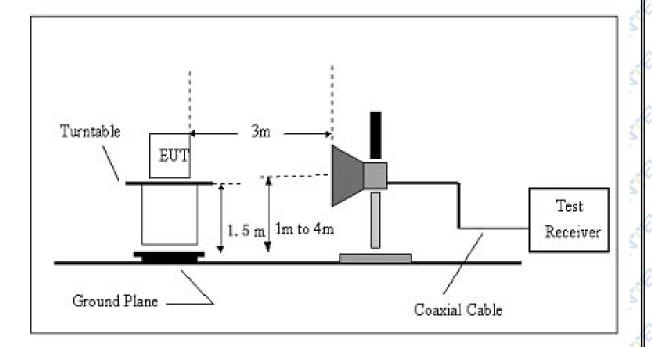
| A         |                     |                   | A A           |
|-----------|---------------------|-------------------|---------------|
|           | 47 MHz to 74 MHz    |                   |               |
| Stata     | 87.5 MHz to 118 MHz | Other frequencies | Frequencies   |
| State     | 174 MHz to 230 MHz  | ≤ 1 000 MHz       | > 1 000 MHz   |
|           | 470 MHz to 862 MHz  |                   |               |
| Operating | 4 nW /-54dBm        | 250 nW/-36dBm     | 1 μW /-30dBm  |
| Standby   | 2 nW /-57dBm        | 2 nW /-57dBm      | 20 nW /-47dBm |

## 8.2 Measuring Instruments and Setting

The following table is the setting of the Spectrum Analyzer.

| Spectrum Analyzer | Setting                |
|-------------------|------------------------|
| Attenuation       | Auto                   |
| Start Frequency   | 1000 MHz               |
| Stop Frequency    | 10th carrier frequency |
| Detector          | Positive Peak          |
| Sweep Time        | Auto A A A A A A       |
| RB / VB           | 1 MHz / 1 MHz          |






#### 8.3 Test Procedures

- a. The EUT was placed on the top of the turntable in open test site area.
- b. The test shall be made in the transmitting mode. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- c. This measurement shall be repeated with the transmitter in standby mode where applicable.
- d. For 30~1000MHz spurious emissions measurement, the broad band bi-log receiving antenna was placed 3 meters far away from the turntable.
- e. The broadband receiving antenna was fixed on the same height with the EUT to find each suspected emissions of both horizontal and vertical polarization. Each recorded suspected value is indicated as Read Level (Raw).
- f. Replace the EUT by standard antenna and feed the RF port by signal generator.
- g. Adjust the frequency of the signal generator to the suspected emission and slightly rotate the turntable to locate the position with maximum reading.
- h. Adjust the power level of the signal generator to reach the same reading with Read Level (Raw).
- i. The level of the spurious emission is the power level of (8) plus the gain of the standard antenna in dBi and minus the loss of the cable used between the signal generator and the standard antenna.
- j. If the level calculated in (9) is higher than limit by more than 6dB, then lower the RBW of the spectrum analyzer to 30KHz. If the level of this emission does not change by more than 2dB, then it is taken as narrowband emission, otherwise, wideband emission.
- k. The measurement shall be repeated at the lowest and the highest channel of the stated frequency range.

#### 8.4 Test Setup Layout

(B) Radiated Emission Test Set-Up Frequency Above 1 GHz





Report No.: NTEK-2016NT05246034R1 Page 28 of 45 8.5 EUT Operation during Test The EUT was programmed to be in continuously transmitting mode. 8.6 Results of Standby Mode Spurious Emissions For the initial investigation on standby mode and receiving mode, no significant differences in spurious emissions were observed between these mode. So test data for standby mode was omitted in this section.



8.7 TEST RESULTS


| EUT:          | Ajax Hub | Model Name :       | Ajax Hub |
|---------------|----------|--------------------|----------|
| Temperature : | 26°C     | Relative Humidity: | 53 %     |
| Pressure:     | 1012 hPa | Test Voltage :     | DC 4.5V  |
| Test Mode :   | TX of of | 0 0 0              | 0, 0, 0  |

| Polar | Frequency | Meter<br>Reading | Factor | Emission<br>Level | Limits | Margin | Detector |
|-------|-----------|------------------|--------|-------------------|--------|--------|----------|
| (H/V) | (MHz)     | (dBm)            | (dB)   | (dBm)             | (dBm)  | (dB)   | Туре     |
| V     | 1743.99   | 60.44            | 3.14   | -33.33            | -30.00 | -3.33  | peak     |
| V     | 2625.24   | 40.31            | 9.27   | -34.01            | -30.00 | -4.01  | peak     |
| V     | 3477.12   | 58.54            | 8.61   | -42.65            | -30.00 | -12.65 | peak     |
| V     | 9498.99   | 39.39            | 14.83  | -40.80            | -30.00 | -10.80 | peak     |
| H     | 1743.99   | 58.51            | 3.45   | -37.26            | -30.00 | -7.26  | peak     |
| 44    | 2683.99   | 35.61            | -5.17  | -42.66            | -30.00 | -12.66 | peak     |
| H     | 4152.74   | 62.26            | -10.82 | -44.42            | -30.00 | -14.42 | peak     |
| H     | 10791.49  | 44.51            | -10.82 | -37.21            | -30.00 | -7.21  | peak     |

Remark:

ect

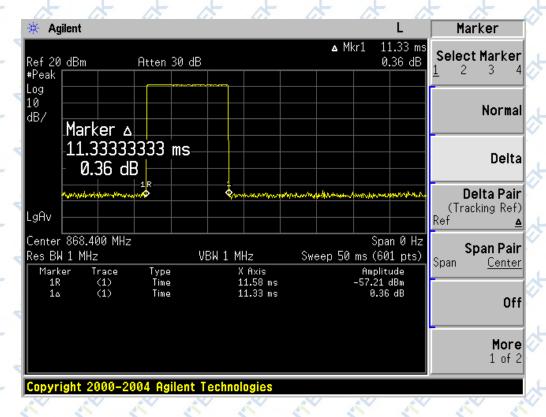
Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit





#### 9. Duty cycle

#### 9.1 Applied procedures / limit


In a period of 1 hour the duty cycle shall not exceed 1%

#### 9.2 TEST RESULTS

Test Result

| Duty Cycle           | Limit | Result   |  |
|----------------------|-------|----------|--|
| ≦ 1% <sub>Note</sub> | 1%    | Complies |  |

Note: The result is that the customer claims that its prototype emission per hour less than 3177 times the number obtained.





#### Transient power

#### 10.1 Applied procedures / limit

At all frequencies where the emission levels measured in step 1 exceed the spurious domain limits (clause 7.8.3), the power level measured in step 1 shall not exceed the power level measured in Step 2 by more than 3 dB.

#### 10.2 Test Procedures

#### Step 1

The transmitter shall be operated with powering on and off (e.g. by switching between active and standby state) at least 5 times within a maximum period of 60 seconds. The recommended powering on- and off-time is at least 1 s respectively. If other on- and off-times are used, this shall be stated in th test report.

The measured power level shall be recorded for the measurement period covering at least 5 powering on and off events for the measurement receiver setting above and below the wanted channel.

If the resulting maximum power level in step 1 is above the spurious domain limit (clause 7.8.3), the second measurement step shall be performed.

#### Step 2

In the second measurement, the procedure shall be repeated with the same settings of the measuring receiver, whereas

the transmitter shall be set on continuous transmission. If this is not possible, the measurements shall be carried out in a period shorter than the duration of the modulated transmitted burst.

The measured power level shall be recorded for the measurement period identical to the one in step 1 for the measurement receiver setting above and below the wanted channel.

Measurement step 1 shall be repeated within the spectrum mask every 120 kHz from the primarily adjusted point to both sides of the wanted frequencies, until either it is clearly ascertained that no power increases or limit exceeding appear, or until the frequency offset to the wanted frequency exceeds 2 MHz.

#### 10.3 Test Result





EUT: Ajax Hub Model Name: Ajax Hub

Temperature: 26°C Relative Humidity: 53 %

Pressure: 1012 hPa Test Voltage: DC 4.5V

Test Mode: TX CH0

## FΑ

|   | Channel<br>Spacing | Step 1  | Step 2 | △(Step<br>1-Step2) | Limit | Results |
|---|--------------------|---------|--------|--------------------|-------|---------|
| 0 | (times)            | (dBm)   | (dBm)  | dB                 | dB    | (P/F)   |
|   | 1(+100kHz)         | 4.186   | 4.369  | -0.183             | 3 4   | PASS    |
|   | 2(+120kHz)         | + 0+ 0+ | d1 d   | 414                | 3     | PASS    |

### FΒ

| _^ |                    |        |        |                    |       |         |
|----|--------------------|--------|--------|--------------------|-------|---------|
| ~  | Channel<br>Spacing | Step 1 | Step 2 | △(Step<br>1-Step2) | Limit | Results |
| 1  | (times)            | (dBm)  | (dBm)  | dB                 | dB    | (P/F)   |
| X  | 1(+100kHz)         | -27.50 | -28.52 | 1.02               | 3     | PASS    |
|    | 2(+120kHz)         | -37.39 | -39.24 | 1.85               | 3     | PASS    |
| 4  | 3(+240kHz)         |        | A 1 A  | 1,0                | 19    | PASS    |
|    | 4(+360kHz)         | 7 1 7  | 7 7    | 7                  | 4 4   | PASS    |



11. Adjacent channel power

#### 11.1 Applied procedures / limit

These measurements are applicable to narrowband systems.

#### Adjacent channel power limits applicable to narrowband systems

| + * * *                       | Channel separation < 20 kHz   | Channel separation ≥ 20 kHz |
|-------------------------------|-------------------------------|-----------------------------|
| Normal test conditions        | 10 μW                         | 200 nW                      |
| Extreme test conditions       | 32 μW                         | 640 nW                      |
| NOTE: These limits also apply | to spread spectrum equipment. |                             |

#### 11.2 Test Procedures

a) The transmitter shall be operated at the carrier power determined under normal test conditions.

The output of the transmitter shall be linked to the input of the "receiver" by a connecting device such that the impedancepresented to the transmitter is 50  $\,\Omega$  and the level at the "receiver input" is appropriate

- b) With the transmitter unmodulated, the tuning of the "receiver" shall be adjusted so that a maximum response is obtained. This is the 0 dB response point. The "receiver" attenuator setting and the reading of the meter shall be recorded. If an unmodulated carrier cannot be obtained, then the measurement shall be made with the transmitter modulated with the normal test signal as appropriate, in which case this fact shall be recorded in test reports.
- c) The transmitter shall be modulated by a normal test signal as appropriate.
- d) The "receiver" variable attenuator shall be adjusted to obtain the same meter reading as in step b), or a known relation to it.
- e) The ratio of the adjacent channel power to the carrier power is the difference between the attenuator settings in steps b) and d), corrected for any differences in the reading of the meter.



## 11.3 Test Result

|               | AX/ AX/  |   |   | /              | 6/5   |          | ~~/ |   |   |
|---------------|----------|---|---|----------------|-------|----------|-----|---|---|
| EUT:          | Ajax Hub |   | 1 | Model Name     | :     | Ajax Hub |     | 4 | 4 |
| Temperature : | 26°C     |   |   | Relative Humic | dity: | 53 %     |     |   |   |
| Pressure :    | 1012 hPa |   |   | Test Voltage : |       | N/A      |     |   |   |
| Test Mode :   | N/A      | 4 | 5 | 4 4            |       | 4        | 4   | 4 | < |

#### 12. Modulation bandwidth

## 12.1 Applied procedures / limit

**Emission Limits of the modulated signal** 

| Reference<br>Bandwidth<br>(RBW) | Limit  | Lower envelope point minimum frequency | Upper envelope point maximum frequency |
|---------------------------------|--------|----------------------------------------|----------------------------------------|
| 1 kHz                           | 1 uW   | fe, lower                              | fe, upper                              |
| 1 kHz                           | 250 nW | (fe, lower - 200 kHz)                  | (fe, upper + 200 kHz)                  |
| 10 kHz                          | 250 nW | (fe, lower - 400 kHz)                  | (fe, upper + 400 kHz)                  |
| 100 kHz                         | 250 nW | (fe, lower - 1 000 kHz)                | (fe, upper + 1000kHz)                  |

In table, fe,lower and fe,upper are the lower and upper edges of the band in which the equipment operates.

#### 12.2 Measuring Instruments and Setting

| Spectrum Analyzer | Setting             |
|-------------------|---------------------|
| Attenuation       | Auto                |
| Detector          | Positive Peak       |
| Sweep Time        | Auto                |
| RB                | 1KHZ, 10KHz, 100KHz |
| VB 🕠              | 3RB                 |

### 12.3 Test Procedures In clauses 7.2 or 7.3

#### 12.4 Test Result



| EUT:          | Ajax Hub | 11 | 1 | Model Name :       | Ajax Hub | 1    |
|---------------|----------|----|---|--------------------|----------|------|
| Temperature : | 26°C     |    |   | Relative Humidity: | 53 %     |      |
| Pressure:     | 1012 hPa |    |   | Test Voltage :     | DC 4.5V  |      |
| Test Mode :   | TX CH0   | 4  | 2 | 4, 4,              | 4 4      | 7. 4 |

# Test Conditions : TNVN

| Upper envelope point maximum frequency | Max Vaule<br>(dBm) | Limit  | Reference<br>Bandwidth<br>(RBW) | Result |
|----------------------------------------|--------------------|--------|---------------------------------|--------|
| (fe, upper + 200 kHz)                  | -32.31             | -30dBm | 1KHz                            | PASS   |
| (fe, upper + 400 kHz)                  | -50.22             | -36dBm | 10KHz                           | PASS   |
| (fe, upper + 1 000 kHz)                | -49.66             | -36dBm | 100KHz                          | PASS   |
| > (fe, upper + 1 000 kHz)              | -46.54             | -36dBm | 100KHz                          | PASS   |

| Lower envelope point minimum frequency | Max Vaule<br>(dBm) | Limit  | Reference<br>Bandwidth<br>(RBW) | Result |
|----------------------------------------|--------------------|--------|---------------------------------|--------|
| (fe, lower - 200 kHz)                  | -32.56             | -30dBm | 1KHz                            | PASS   |
| (fe, lower - 400 kHz)                  | -51.49             | -36dBm | 10KHz                           | PASS   |
| (fe, lower - 1 000 kHz)                | -50.65             | -36dBm | 100KHz                          | PASS   |
| < (fe, lower - 1 000 kHz)              | -47.79             | -36dBm | 100KHz                          | PASS   |

| Upper envelope point maximum frequency | Max Vaule<br>(dBm) | Limit  | Reference<br>Bandwidth<br>(RBW) | Result |
|----------------------------------------|--------------------|--------|---------------------------------|--------|
| (fe, upper + 200 kHz)                  | -32.69             | -30dBm | 1KHz                            | PASS   |
| (fe, upper + 400 kHz)                  | -52.87             | -36dBm | 10KHz                           | PASS   |
| (fe, upper + 1 000 kHz)                | -49.50             | -36dBm | 100KHz                          | PASS   |
| > (fe, upper + 1 000 kHz)              | -46.13             | -36dBm | 100KHz                          | PASS   |



| Lower envelope point minimum frequency | Max Vaule<br>(dBm) | Limit  | Reference<br>Bandwidth<br>(RBW) | Result |
|----------------------------------------|--------------------|--------|---------------------------------|--------|
| (fe, lower - 200 kHz)                  | -32.46             | -30dBm | 1KHz                            | PASS   |
| (fe, lower - 400 kHz)                  | -51.54             | -36dBm | 10KHz                           | PASS   |
| (fe, lower - 1 000 kHz)                | -50.77             | -36dBm | 100KHz                          | PASS   |
| < (fe, lower - 1 000 kHz)              | -46.46             | -36dBm | 100KHz                          | PASS   |

## TLVL

| Upper envelope point maximum frequency | Max Vaule<br>(dBm) | Limit  | Reference<br>Bandwidth<br>(RBW) | Result |
|----------------------------------------|--------------------|--------|---------------------------------|--------|
| (fe, upper + 200 kHz)                  | -32.15             | -30dBm | 1KHz                            | PASS   |
| (fe, upper + 400 kHz)                  | -52.68             | -36dBm | 10KHz                           | PASS   |
| (fe, upper + 1 000 kHz)                | -49.77             | -36dBm | 100KHz                          | PASS   |
| > (fe, upper + 1 000 kHz)              | -46.45             | -36dBm | 100KHz                          | PASS   |

| Lower envelope point minimum frequency | Max Vaule<br>(dBm) | Limit  | Reference<br>Bandwidth | Result |
|----------------------------------------|--------------------|--------|------------------------|--------|
| (fe, lower - 200 kHz)                  | -32.58             | -30dBm | (RBW)                  | PASS   |
| (fe, lower - 400 kHz)                  | -51.32             | -36dBm | 10KHz                  | PASS   |
| (fe, lower - 1 000 kHz)                | -50.76             | -36dBm | 100KHz                 | PASS   |
| < (fe, lower - 1 000 kHz)              | -46.53             | -36dBm | 100KHz                 | PASS   |

## THVL

| Upper envelope point maximum frequency | Max Vaule<br>(dBm) | Limit  | Reference<br>Bandwidth<br>(RBW) | Result |
|----------------------------------------|--------------------|--------|---------------------------------|--------|
| (fe, upper + 200 kHz)                  | -32.66             | -30dBm | 1KHz                            | PASS   |
| (fe, upper + 400 kHz)                  | -52.55             | -36dBm | 10KHz                           | PASS   |
| (fe, upper + 1 000 kHz)                | -49.48             | -36dBm | 100KHz                          | PASS   |
| > (fe, upper + 1 000 kHz)              | -47.32             | -36dBm | 100KHz                          | PASS   |

J. C.

3

4

zi et

zi et

3

4

3

zi et

Zi ct

zi et

zi et

-Sirie

Zirik

A.

A.

A.

A. C.

-ST.

4

SPECIAL PROPERTY.



| Lower envelope point minimum frequency | Max Vaule<br>(dBm) | Limit  | Reference<br>Bandwidth<br>(RBW) | Result |
|----------------------------------------|--------------------|--------|---------------------------------|--------|
| (fe, lower - 200 kHz)                  | -33.29             | -30dBm | 1KHz                            | PASS   |
| (fe, lower - 400 kHz)                  | -51.57             | -36dBm | 10KHz                           | PASS   |
| (fe, lower - 1 000 kHz)                | -50.62             | -36dBm | 100KHz                          | PASS   |
| < (fe, lower - 1 000 kHz)              | -47.44             | -36dBm | 100KHz                          | PASS   |

## TLVH

S. C.

A.C.

A STATE OF THE STA

A. Cot

A STIEF

A.C.

S.E.

A. C.

A COL

A.C.t

A STATE OF THE PARTY OF THE PAR

N. C.

A. C.

A. C.

And A dit

secret as

A STATE OF THE STA

| at ?     | Upper envelope point maximum frequency | Max Vaule<br>(dBm) | Limit  | Reference<br>Bandwidth<br>(RBW) | Result |
|----------|----------------------------------------|--------------------|--------|---------------------------------|--------|
| ٧ - ١    | (fe, upper + 200 kHz)                  | -32.77             | -30dBm | 1KHz                            | PASS   |
|          | (fe, upper + 400 kHz)                  | -52.74             | -36dBm | 10KHz                           | PASS   |
| ٦<br>- ا | (fe, upper + 1 000 kHz)                | -49.48             | -36dBm | 100KHz                          | PASS   |
|          | > (fe, upper + 1 000 kHz)              | -47.66             | -36dBm | 100KHz                          | PASS   |

|      | Lower envelope point minimum frequency | Max Vaule<br>(dBm) | Limit  | Reference<br>Bandwidth<br>(RBW) | Result   |
|------|----------------------------------------|--------------------|--------|---------------------------------|----------|
|      | (fe, lower - 200 kHz)                  | -33.83             | -30dBm | 1KHz                            | PASS     |
| O.   | (fe, lower - 400 kHz)                  | -51.05             | -36dBm | 10KHz                           | PASS     |
|      | (fe, lower - 1 000 kHz)                | -51.47             | -36dBm | 100KHz                          | PASS     |
| dt.  | < (fe, lower - 1 000 kHz)              | -48.34             | -36dBm | 100KHz                          | PASS     |
|      | 7 7 7                                  | 4 4                | 4 4    | 4 4                             | 4 4      |
| et   | at at at                               | .d. d              | at at  | ot of                           | d .d     |
|      |                                        | 4 4                | 4 4    | 7, 7,                           | 4, 4,    |
| ot . | at at at                               |                    | at at  | of of                           | - d .d   |
|      |                                        | 4 4                | 4 4    | 7, 7,                           | 4 4      |
| ot . | et et et                               | at at              | at at  | ot of                           | - ot .ct |
|      |                                        | 4 4                | 4 4    | 4. 4.                           | 4 4      |
| . Ct | et et et                               | at at              | et et  | d . d                           | - at .at |
|      | 4 4 4                                  | 4 4                | 4 4    | 7, 7,                           | 4 4      |
| Ct.  | at at at                               | at at              | et et  | et et                           | - at .at |
|      | 7, 7, 7,                               | 4 4                | 4 4    | 4 4                             | 4 4      |
| 4    | at at at                               | d d                | at at  | d 0                             | 4 0      |
|      | 4 4                                    | 4 4                | 4 4    | 4 4                             | 4 4      |
| .ct  | at at at                               | at at              | et et  | et et                           | ct .ct   |

THE WHEN THE WHEN THE STATE OF THE STATE OF



#### 13 Receiver sensitivity

#### 13.1 Limit

Under normal test conditions, the value of the maximum usable sensitivity for a 25 kHz channel spacing equipment with a 16 kHz bandwidth shall not exceed +6 dBμV emf for a 50 Ω receiver input impedance. This corresponds to a receiver sensitivity of -107 dBm which shall not be exceeded. The limit for usable sensitivity for other receiver bandwidths than 16 kHz is given by:

$$S = +6 + 10\log \frac{BW}{16} dB\mu V emf$$
  
 $S_F = 10\log \frac{BW}{16} - 107 dBm$ 

#### where

- S is the sensitivity in dBµV emf;
- S<sub>P</sub> is the sensitivity in dBm;
- BW is the receiver bandwidth in kHz. The receiver bandwidth is a declaration by the manufacturer.

declaration shall be stated in the test report.

#### 13.2 Method of measurement with continuous bit streams

The method please refer to the standard ETSI EN 300 220-1 V2.4.1: 2012-05 clause 8.1.2.

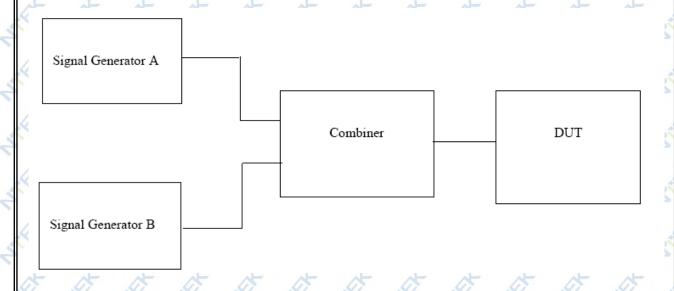
#### 13.3 Method of measurement with messages

The method please refer to the standard ETSI EN 300 220-1 V2.4.1: 2012-05 clause 8.1.3.





## 14. Blocking


## 14.1 Applied procedures / limit

| Receiver category | Frequency offset | Limit              |
|-------------------|------------------|--------------------|
| 1 ±2 MHz          |                  | ≥84 dB -A (note 2) |
| 2 2 2 2           | ±2 MHz           | ≥35 dB -A (note 2) |
| 3                 | ±2 MHz           | ≥24 dB -A (note 2) |
| 4 4 1 4 4         | ±10 MHz          | ≥84 dB -A (note 2) |
| C (2              | ±10 MHz          | ≥60 dB -A (note 2) |
| 2 2 3 2 2         | ±10 MHz          | ≥44 dB -A (note 2) |

NOTE 1: The limits apply also for the repeated tests in case of equipment using LBT or category 1 receivers, reduced by 13 dB or 40 dB, respectively, to account for the increased wanted signal level.

NOTE 2: A = 10 log (BWkHz / 16 kHz) BW is the receiver bandwidth.

#### 14.2 Method of measurement



#### 14.3 Test Procedures In clauses EN 300 220-1 8.4.2

A COL



Report No.: NTEK-2016NT05246034R1

Ziri

4

311

Zirk.

#### 14.4 Test Result:

N. Cot

N.E.

A. C.

A.C.

N. Colonial Colonial

N.C.

A SIGH

A ....

N.C.

N.C.

N.C.

N. C.

N. Cot

N.C.

A STORE

A. C.

A STORT

A STORT

T

THE PARTY OF THE P

FIFT FIFT

T

A. C.

\* C+

· Ct

|   | I.4 Test Result:<br>Receiver bandwidth | n=788.55KHz | A P   | et wiet wiet       | Aigh Aigh | Ailt Ai |
|---|----------------------------------------|-------------|-------|--------------------|-----------|---------|
| 2 | EUT:                                   | Ajax Hub    | 4     | Model Name :       | Ajax Hub  | 4       |
|   | Temperature :                          | 26°C        | 31 31 | Relative Humidity: | 53 %      | 31      |
|   | Pressure:                              | 1012 hPa    |       | Test Voltage :     | DC 4.5V   | , ,     |
| 4 | Test Mode :                            | RX 🔷        |       |                    | , Q , Q   |         |

| Receiver category | Frequency offset | Reciever BW(kHz) | Measurement Vause(dB) | Limit(dB) |
|-------------------|------------------|------------------|-----------------------|-----------|
|                   | -2 MHz           | 788.55           | 21.51                 | 7.07      |
| 4 4               | +2 MHz           | 788.55           | 23.13                 | 7.07      |
| 3                 | -10 MHz          | 788.55           | 34.45                 | 27.07     |
| 4 4               | -10 MHz          | 788.55           | 36.66                 | 27.07     |

A STORE

A.C.

Y. C.

A STORT

N.C.

A STORE

south Fifth

A STORY

4 Silet

A. C.

weet weet

Fift Fift

· CT

T. C.

A STORE OF THE PERSON OF THE P

S. C.

A STORT

Sigt.

T

Fift Fift

ALC:

4 Contract

ALICH .

A STORY

A. C.

Sigt.

S. C.

A STORT

, ot

T.

and the

3

ant.

3

4

3

BELL STA

Zi.c

-Jil



#### 15. Spurious emissions - Receiver (30-1000MHz)

#### 15.1 Applied procedures / limit

| Clause | Test Item          | Frequency(MHz) | Limit  |  |  |
|--------|--------------------|----------------|--------|--|--|
| 125    | Spurious emissions | 25-1000        | -57dBm |  |  |
| 4.3.5  | (radiated)         | Above 1000     | -47dBm |  |  |

#### 15.2 Measuring Instruments and Setting

The following table is the setting of the Spectrum Analyzer.

| Spectrum Analyzer | Setting         |
|-------------------|-----------------|
| Attenuation       | Auto            |
| Start Frequency   | 25 MHz          |
| Stop Frequency    | 1000 MHz        |
| Detector          | Positive Peak   |
| Sweep Time        | Auto            |
| RB / VB           | 100 kHz/100 kHz |

#### 15.3 Test Procedures

- a. The EUT was placed on the top of the turntable in open test site area.
- b. The test shall be made in the receiving mode. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- c. For 30~1000MHz spurious emissions measurement, the broad band bi-log receiving antenna was placed 3 meters far away from the turntable.
- d. The broadband receiving antenna was fixed on the same height with the EUT to find each suspected emissions of both horizontal and vertical polarization. Each recorded suspected value is indicated as Read Level (Raw).
- e. Replace the EUT by standard antenna and feed the RF port by signal generator.
- f. Adjust the frequency of the signal generator to the suspected emission and slightly rotate the turntable to locate the position with maximum reading.
- g. Adjust the power level of the signal generator to reach the same reading with Read Level (Raw).
- h. The level of the spurious emission is the power level of (7) plus the gain of the standard antenna in dBi and minus the loss of the cable used between the signal generator and the standard antenna.
- The measurement shall be repeated at the lowest and the highest channel of the stated frequency range.

#### 15.4 Test Setup Layout

This test setup layout is the same as that shown in section 5.1.3

#### 15.5 EUT Operation during Test

The EUT was programmed to be in continuously receiving mode.



## 15.6 TEST RESULTS (25MHz-1000MHz)

| EUT:          | Ajax Hub | Model Name :       | Ajax Hub |
|---------------|----------|--------------------|----------|
| Temperature : | 26°C     | Relative Humidity: | 53 %     |
| Pressure:     | 1012 hPa | Test Voltage :     | DC 4.5V  |
| Test Mode :   | RX & & & | * * *              | * * *    |

| Polar | Frequency | Meter Reading | Factor | Emission<br>Level | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Margin | Detector |
|-------|-----------|---------------|--------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|
| (H/V) | (MHz)     | (dBm)         | (dB)   | (dBm)             | (dBm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (dB)   | Туре     |
| V     | 44.38     | 60.44         | 17.31  | -74.24            | -57.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -17.24 | peak     |
| V     | 182.22    | 40.31         | 12.42  | -78.28            | -57.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -21.28 | peak     |
| V     | 338.66    | 58.54         | 13.60  | -68.46            | -57.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -11.46 | peak     |
| H     | 46.90     | 39.39         | 16.17  | -72.50            | -57.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -15.50 | peak     |
| Н     | 343.30    | 58.51         | 13.75  | -69.00            | -57.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -12.00 | peak     |
| H     | 397.61    | 35.61         | -5.17  | -69.80            | -57.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -12.80 | peak     |
|       | A         |               | A D    | A                 | The same of the sa | A      | A 10     |

#### Remark:

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit



#### 16. Spurious emissions – Receiver (above 1000MHz)

#### 16.1 Applied procedures / limit

| Clause | Test Item          | Frequency(MHz) | Limit  |
|--------|--------------------|----------------|--------|
| 125    | Spurious emissions | 25-1000        | -57dBm |
| 4.3.5  | (narrowband)       | Above 1000     | -47dBm |

#### 16.2 Measuring Instruments and Setting

Please refer to section 9.1.1 in this report. The following table is the setting of the Spectrum Analyzer.

| Spectrum Analyzer | Setting       |
|-------------------|---------------|
| Attenuation       | Auto A A A    |
| Start Frequency   | 1000 MHz      |
| Stop Frequency    | 12750 MHz     |
| Detector          | Positive Peak |
| Sweep Time        | Auto          |
| RB / VB           | 1MHz / 1MHz   |

#### 16.3 Test Procedures

- a. The EUT was placed on the top of the turntable in open test site area.
- b. The test shall be made in the receiving mode. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- c. For 30~1000MHz spurious emissions measurement, the broad band bi-log receiving antenna was placed 3 meters far away from the turntable.
- d. The broadband receiving antenna was fixed on the same height with the EUT to find each suspected emissions of both horizontal and vertical polarization. Each recorded suspected value is indicated as Read Level (Raw).
- e. Replace the EUT by standard antenna and feed the RF port by signal generator.
- f. Adjust the frequency of the signal generator to the suspected emission and slightly rotate the turntable to locate the position with maximum reading.
- g. Adjust the power level of the signal generator to reach the same reading with Read Level (Raw).
- h. The level of the spurious emission is the power level of (7) plus the gain of the standard antenna in dBi and minus the loss of the cable used between the signal generator and the standard antenna.
- The measurement shall be repeated at the lowest and the highest channel of the stated frequency range.

#### 16.4 Test Setup Layout

This test setup layout is the same as that shown in section 6.1.3

#### 16.5 EUT Operation during Test

The EUT was programmed to be in continuously receiving mode.

A.C.

Report No.: NTEK-2016NT05246034R1

45

7

Zi ch

zi cit

Zi ch

and the second

zi et

S. C.

zi et

Si th

Zi et

BELL STATE

A.

Zi.

A.

A.

J.

A.

A.

-Sirie

A.

A.C.



A. C.

S. C.

A. C.

A.O.

A.C.

A. C.

4. Cit

A STATE OF THE PARTY OF THE PAR

S.C.

A. Cot

A. C.

4. Cot

S. C.

N.C.

A. C.

A. Colo

S. C.

A. C.

with the

and the state of t

| 16.6 TEST RESU | LTS (Above 1000MHz) | 1 | et just       | .et   | a let    | -Ot | , Ct |
|----------------|---------------------|---|---------------|-------|----------|-----|------|
| EUT:           | Ajax Hub            |   | Model Name    | :     | Ajax Hub |     | 7 7  |
| Temperature :  | 26°C                |   | Relative Humi | dity: | 53 %     | .47 | 4    |
| Pressure:      | 1012 hPa            | 3 | Test Voltage  | :     | DC 4.5V  |     | 2 2  |
| Test Mode :    | RX + +              |   | * *           | 木     | *        | *   | *    |

| (H/V)         (MHz)         (dBm)         (dB)         (dBm)         (dBm)         (dBm)         Typ           V         2977.74         60.44         8.96         -51.46         -47.00         -4.46         pea           V         6443.99         40.31         12.99         -50.58         -47.00         -3.58         pea           V         8470.87         58.54         15.69         -51.34         -47.00         -4.34         pea           V         10350.87         39.39         16.44         -51.29         -47.00         -4.29         pea           H         2830.87         58.51         8.71         -52.83         -47.00         -5.83         pea           H         6620.24         35.61         -5.17         -51.29         -47.00         -4.29         pea           H         7971.49         62.26         -10.82         -50.15         -47.00         -3.15         pea | st Mode | e: RX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | * *            | x /         | * *             | A 0        | + 4       | - 4     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|-----------------|------------|-----------|---------|
| Frequency   Reading   Factor   Level   Limits   Margin   Detect   Typ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21      | Z'' Z''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 211 2          |             | - Zi Zi         | 20         | 3         | Zi      |
| MHz  (dBm) (dB) (dBm) (dBm) (dBm) (dB)   MHz    V   2977.74   60.44   8.96   -51.46   -47.00   -4.46   pea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Polar   | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | Factor      |                 | Limits     | Margin    | Detecto |
| V         6443.99         40.31         12.99         -50.58         -47.00         -3.58         pea           V         8470.87         58.54         15.69         -51.34         -47.00         -4.34         pea           V         10350.87         39.39         16.44         -51.29         -47.00         -4.29         pea           H         2830.87         58.51         8.71         -52.83         -47.00         -5.83         pea           H         6620.24         35.61         -5.17         -51.29         -47.00         -4.29         pea           H         7971.49         62.26         -10.82         -50.15         -47.00         -3.15         pea           H         10791.49         44.51         -10.82         -51.16         -47.00         -4.16         pea           Remark:         Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit              | (11/4)  | (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (dBm)          | (dB)        | (dBm)           | (dBm)      | (dB)      | Type    |
| V         8470.87         58.54         15.69         -51.34         -47.00         -4.34         pea           V         10350.87         39.39         16.44         -51.29         -47.00         -4.29         pea           H         2830.87         58.51         8.71         -52.83         -47.00         -5.83         pea           H         6620.24         35.61         -5.17         -51.29         -47.00         -4.29         pea           H         7971.49         62.26         -10.82         -50.15         -47.00         -3.15         pea           Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit         Absolute Level - Limit                                                                                                                                                                                                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 2 4          |             |                 |            |           | peak    |
| V 10350.87 39.39 16.44 -51.29 -47.00 -4.29 pea<br>H 2830.87 58.51 8.71 -52.83 -47.00 -5.83 pea<br>H 6620.24 35.61 -5.17 -51.29 -47.00 -4.29 pea<br>H 7971.49 62.26 -10.82 -50.15 -47.00 -3.15 pea<br>H 10791.49 44.51 -10.82 -51.16 -47.00 -4.16 pea<br>Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |                 |            |           | peak    |
| H 2830.87 58.51 8.71 -52.83 -47.00 -5.83 pea<br>H 6620.24 35.61 -5.17 -51.29 -47.00 -4.29 pea<br>H 7971.49 62.26 -10.82 -50.15 -47.00 -3.15 pea<br>H 10791.49 44.51 -10.82 -51.16 -47.00 -4.16 pea<br>Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |                 |            |           | peak    |
| H 6620.24 35.61 -5.17 -51.29 -47.00 -4.29 pea H 7971.49 62.26 -10.82 -50.15 -47.00 -3.15 pea H 10791.49 44.51 -10.82 -51.16 -47.00 -4.16 pea Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <del> </del>   |             |                 |            |           | • 4     |
| H 7971.49 62.26 -10.82 -50.15 -47.00 -3.15 pea<br>H 10791.49 44.51 -10.82 -51.16 -47.00 -4.16 pea<br>Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |                 |            |           | peak    |
| H 10791.49 44.51 -10.82 -51.16 -47.00 -4.16 peagemark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |                 |            |           | peak    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |                 |            |           | peak    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Remarl  | k: Absolute Lev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vel= ReadingLe | evel+ Facto | or, Margin= Abs | olute Leve | l - Limit |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .47     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | A .         |                 | 4          |           | .0      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2       | الله الله                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4 4            |             | نے نے           |            | 2         | 2       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1       | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | + +            | +           | + +             | + 1        | + 4       | - \     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.47    | 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |             |                 | .47        | 7 347     | 124     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4       | 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 4            | . 4         | 4 4             | 4          | 4         | 4       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 大       | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | * *            | 4           | * *             | 1 1        | 4         | -       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HILL    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |                 |            | 110       | 410     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |                 |            |           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | A .         |                 | 4          | ·         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7,      | 21 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | 7           |                 |            | 3         | 2       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1       | - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | الم الم        | 4           | L \ L           | AL .       | الم ل     | _       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |                 | 4          |           | 124     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4       | 4, 4,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4, 4           | . 4.        | 4, 4            | 4          | 4.        | 4.      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4       | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | * *            | *           | * *             | * 1        | + 4       |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11/4    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 10          |                 | .4         | 1         | 1100    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4       | 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 4            | , 4         | 4 4             | 4          | 4         | 4       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | * 4            | 4           | * 4             | 4          | <b>*</b>  | - 6     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7,1     | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |             |                 | 7          | 7         | 7       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . L     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |                 |            | L .L      |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0      | AT A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | Q .         |                 | 4          | 7 .0      | -0      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7,      | 7, 7,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 4            | 7           | 4, 4            |            | 2         | 7       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *       | - +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | + +            | +           | + +             | + 1        | + +       | - \     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.47    | and and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 19           | A THE       | 7 34            | W. J.K     | 1         | 100     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4       | 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 4            | 5           | 4 4             | 4          | 4         | 4       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1       | - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | * *            | At 1        | * *             | d 1        | + 4       | - 4     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HIV     | The state of the s |                | 1           |                 | LA FIR     | 1100      | A. C.   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 4            | 4           | 7 7             | 4          | 7         | -       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 4            | D 1         | * 4             | 05 0       | 7 0       | - 4     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3       | 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 3            | 3           | 3 3             | 3          | 3         | 3       |

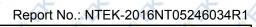
rect The

with the same

rect the

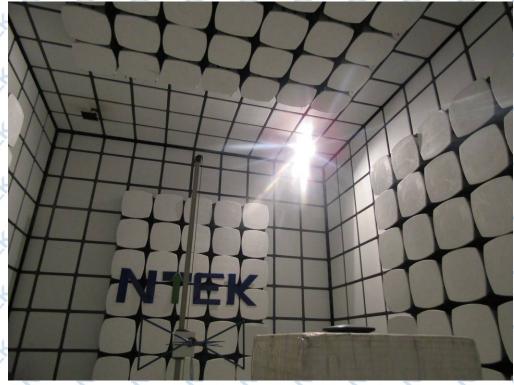
rect the

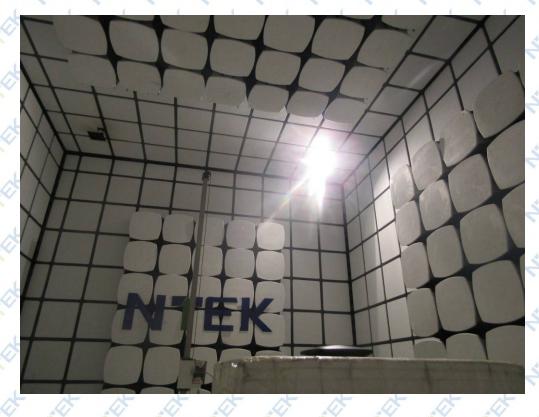
and the same of th


and the same of th

rect The

secret sich


secret sich


FILL FILL









